Ministry of Education and Science of Ukraine Dnipro University of Technology

FACULTY OF GEOLOGICAL PROSPECTING OIL AND GAS ENGINEERING DEPARTMENT

"APPROVED"				
	Head of D	epartment		
Koro	oviaka Ye	1		
"	**	2019		

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

"Drilling of inclined-directional wells"

Specialty	185 Oil and Gas Engineering and Technology				
Academic degree	Technology Bachelor Oil and Gas Engineering and Technology selective 4 ECTS credits (120 hours) differential credit 7nd semester English				
	locent Khomenko VL.				
Prolonged: for 20 / 20 academic yea (Signatu	r _{re, name, date)} () "" 20				
for 20 / 20 academic year	r				

Dnipro NTU "DP" 2019 Work program of the academic discipline "Drilling of inclined-directional wells" for bachelor's specialty 185 "Oil and Gas Engineering and Technology"/VL Khomenko / NTU "Dnipro Polytechnic" Oil and Gas Engineering Department. - DA: NTU «DP» 2019. - 12 p.

Authors:

Khomenko VL, assistant professor of Oil and Gas Engineering Department.

The work program regulates:

- key goals and objectives;
- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;
- the content of the discipline formed according to the criterion "disciplinary learning outcomes";
 - the discipline program (thematic plan by different types of classes);
 - distribution of the discipline workload by different types of classes;
- an algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and evaluation criteria);
- criteria and procedures for evaluating the academic achievements of applicants by discipline;
 - the contents of the educational and methodological support of the discipline;

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

Approved by the decision of the Methodical Commission of specialty 185 "Oil and Gas Engineering and Technology" (protocol № 6 from 07.06.2019).

Recommended for publication by the editorial board of NTUDP (protocol N_2 # from ##.##.20##).

CONTENTS

1 DISCIPLINE OBJECTIVES	4
2 INTENDED DISCIPLINARY LEARNING OUTCOMES	
3 BASIC DISCIPLINES	4
4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES	5
5 DISCIPLINE PROGRAM BY TYPES OF CLASSES	5
6 KNOWLEDGE PROGRESS TESTING	6
6.1 GRADING SCALES	6
6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES	6
6.3 EVALUATION CRITERIA	8
7 TOOLS, EQUIPMENT, AND SOFTWARE	11
8 RECOMMENDED BIBLIOGRAPHY	11

1 DISCIPLINE OBJECTIVES

In the educational and professional programs of the Dnipro University of Technology specialty 185 "Oil and gas engineering and technology", the distribution of program learning outcomes (NRN) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline B1.11 "Drilling of inclined-directional wells":

BP1.1	To create drilling technologies for oil and gas wells
BP1.2	To build oil and gas wells
BP1.3	Calculate optimal drilling modes for oil and gas wells
BP1.4	To use in practice the methods of diagnostics of the level of efficiency of the equipment
	for drilling of oil and gas wells
BP1.5	Ensure the safety of drilling operations in accordance with the operating rules
BP1.6	Evaluate and restore quality indicators for the process of oil and gas wells

The objective of discipline - formation of competencies on the basics of drilling of inclined-oriented wells.

The implementation of the objective requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

Code	Disciplinary learning outcomes (DRN)			
NRN	DRN code content			
BP1.1	BP1.1-B1.11	To know the basic objects of the technique of direct drilling of wells and		
		coremetry		
BP1.2	BP1.2-B1.11	To design technologies of artificial distortion and orientation of dusters		
BP1.3	BP1.3-B1.11	Use oriented core selection technologies		
BP1.4	BP1.4-B1.11	To find the necessary information and to carry out design of works on the directional drilling		
BP1.5	BP1.5-B1.11	Orient the deflectors		
BP1.6	BP1.6-B1.11	Determine the parameters of occurrence of rocks along the oriented core		

3 BASIC DISCIPLINES

Subjects	The acquired learning outcomes	
F1 Introduction to the specialty	to preserve and enhance the moral, cultural, scientific values	
	and achievements of society on the basis of understanding of	
	the history and patterns of development of the oil and gas	
	industry, its place in the general system of knowledge about	
	nature and society and in the development of society,	
	technology and technology	
	communicate with representatives of other professional	
	groups of different levels (with experts from other fields of	
	knowledge / types of economic activity)	
	to know the general structure, interconnection and functional	
	assignment of certain elements of the system of providing	

Subjects	The acquired learning outcomes	
	Ukraine with hydrocarbon energy	
F14 Well drilling (for oil and gas)	demonstrate the ability to develop projects of elements of	
	technological schemes and technical devices of drilling	
	systems	
	to analyze the operating modes of components of a drilling	
	object, to make the optimum choice of technological	
	equipment, to optimize the operating mode by a certain	
	criterion	
	design well drilling technologies	
	to carry out regulatory and technical support of well drilling	
	processes	
	to organize drilling work under conditions of high	
	productivity, safety and minimum costs	
	to control well drilling using modern methods of analysis and	
	processing of information	

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES

	ad	Distribution by forms of education, hours					
Type of	klo; urs	Full-time		Part-time		Distance	
Type of classes	Worklos hours	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)
lecture	80	26	54	14	66	6	74
practical	40	13	27	6	34	4	36
laboratory	-	-	-	-	-	-	-
workshops	-	-	-	- 1	-	-	-
TOGETHER	120	39	81	20	100	10	110

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Ciphers DRN	Types and topics of training sessions	The volume of components, hours
	LECTURES	80
BP1.1-B1.11	1 Spatial location of wells	8
BP1.2-B1.11	2 Methods and technical means of controlling the parameters of well bending	8
BP1.2-B1.11	3 Causes and patterns of borehole distortion	8
BP1.2-B1.11	4 Preventing well bends	8
BP1.2-B1.11	5 Designing tracks of single-bore wells	8
BP1.4-B1.11		
BP1.1-B1.11	6 Artificial curvature methods and techniques	8
BP1.2-B1.11		
BP1.5-B1.11	7 Deflector orientation	8
BP1.2-B1.11	8 Artificial curvature technology	8
BP1.4-B1.11		
BP1.1-B1.11	9 Multiple-hole drilling	8
BP1.2-B1.11		

Ciphers DRN	Types and topics of training sessions	The volume of components, hours
BP1.3-B1.11	10 Fundamentals of kernometry	8
	PRACTICAL TRAINING	40
BP1.6-B1.11	1 Control of well curvature parameters	6
BP1.2-B1.11	2. Construction of a projection of a curved well	7
BP1.6-B1.11		
BP1.1-B1.11	3. Design of the well profile	7
BP1.4-B1.11	4. Study of the design of deflectors	6
BP1.1-B1.11	5. Orientation of deflectors	7
BP1.2-B1.11		
BP1.6-B1.11	6. Determination of elements of occurrence of rocks on the oriented	7
	core	
	TOGETHER	120

6 KNOWLEDGE PROGRESS TESTING

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 GRADING SCALES

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

The scales of assessment of learning outcomes of the NTUDP students

Rating	Institutional		
90 100	Excellent		
74 89	Good		
60 73	Satisfactory		
0 59	Failed		

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in accordance with the Regulations on the Organization of the Educational Process of NTUDP.

6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES

The content of diagnostic tools is aimed at controlling the level of knowledge, skills, communication, autonomy, and responsibility of the student according to the

requirements of the National Qualifications Framework (NQF) up to the 7th qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks for the intermediate and final knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the intermediate and final knowledge progress testing are approved by the appropriate department.

Type of diagnostic tools and procedures for evaluating the intermediate and final knowledge progress testing are given below.

INTERMEDIATE CONTROL			FINAL ASSESSMENT		
training sessions	diagnostic tools	procedures	diagnostic tools	procedures	
lectures	control tasks for each topic	task during lectures		determining the average results of intermediate	
practical	control tasks for each topic	tasks during practical classes	(CCW)	controls;	
	or individual task	tasks during independent work		CCW performance during the examination at the	
		1		request of the student	

Diagnostic and assessment procedures

During the intermediate control, the lectures are evaluated by determining the quality of the performance of the control specific tasks. Practical classes are assessed by the quality of the control or individual task.

If the content of a particular type of teaching activity is subordinated to several descriptors, then the integral value of the assessment may be determined by the weighting coefficients set by the lecturer.

Provided that the level of results of the intermediate controls of all types of training at least 60 points, the final control can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the intermediate control, every student during the final knowledge progress testing has the right to perform the CDF, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CDF should be consistent with the allotted time for completion. The number of CDF options should ensure that the task is individualized.

The value of the mark for the implementation of the CDF is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the CDF performance assessment can be determined by taking into account the weighting factors established by the department for each NLC descriptor.

6.3 EVALUATION CRITERIA

The actual student learning outcomes are identified and measured against what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of the learning outcomes.

To evaluate the performance of the control tasks during the intermediate control of lectures and practicals the assimilation factor is used as a criterion, which automatically adapts the indicator to the rating scale:

$$O_i = 100 \text{ a} / \text{m}$$

where a - number of correct answers or significant operations performed according to the solution standard; m - the total number of questions or substantial operations of the standard.

Individual tasks and complex control works are expertly evaluated using criteria that characterize the ratio of competency requirements and evaluation indicators to a rating scale.

The content of the criteria is based on the competencies identified by the NLC for the Bachelor's level of higher education (given below).

General criteria for achieving learning outcomes 7th qualification for LDCs (BA)

Integral competence is the ability to solve complex problems and specialized practical problems in a particular area of professional activities or in a learning process that involves the use of certain theories and methods of the relevant scientific areas and characterized by complexity and conditions uncertainty.

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation		
Knowledge				
• Conceptual knowledge acquired during the training and professional activities, including some knowledge of modern	- A great - proper, reasonable, sensible. Measures the presence of: - conceptual knowledge; - a high degree of state ownership issues; - critical understanding of the main theories, principles, methods and concepts in education and careers	95-100		
	A non-gross contains mistakes or errors	90-94		
achievements;	The answer is correct but has some inaccuracies	85-89		
• critical	A correct some inaccuracies but has also proved insufficient	80-84		
understanding of the main theories, principles, methods,	The answer is correct but has some inaccuracies, not reasonable and meaningful	74-79		
	A fragmentary	70-73		
and concepts in	A student shows a fuzzy idea of the object of study	65-69		
education and careers	Knowledge minimally satisfactory	60-64		
	Knowledge unsatisfactory	<60		
Ability				

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
• solving complex	- The answer describes the ability to:	95-100
problems and	- identify the problem;	
unforeseen problems in	- formulate hypotheses;	
specialized areas of	- solve problems;	
professional and/or	- choose adequate methods and tools;	
training, which	- collect and interpret logical and understandable	
involves the collection	information;	
and interpretation of	- use innovative approaches to solving the problem	
information (data),	The answer describes the ability to apply knowledge in	90-94
choice of methods and	practice with no blunders	
tools, the use of	The answer describes the ability to apply knowledge in	85-89
innovative approaches	practice but has some errors in the implementation of a	
	requirement	
	The answer describes the ability to apply knowledge in	80-84
	practice but has some errors in the implementation of the	
	two requirements	
	The answer describes the ability to apply knowledge in	74-79
	practice but has some errors in the implementation of the	1177
	three requirements	
	The answer describes the ability to apply knowledge in	70-73
	practice but has some errors in the implementation of the	10-13
	four requirements	
	The answer describes the ability to apply knowledge in	65-69
	practice while performing tasks on the model	03-07
	A characterizes the ability to apply knowledge in	60-64
	performing tasks on the model, but with uncertainties	00-04
	The level of skills is poor	<60
	Communication	<u> </u>
◆ report to specialists	- Fluent problematic area. Clarity response (report).	95-100
and non-specialists of	Language - correct;	75 100
information, ideas,		
problems, solutions and	net;	
their experience in the	clear;	
field of professional	accurate;	
activity;	logic;	
• the ability to form an	expressive;	
effective	concise.	
	Communication strategy:	
communication strategy	coherent and consistent development of thought;	
	availability of own logical reasoning;	
	relevant arguments and its compliance with the provisions	
	defended;	
	the correct structure of the response (report);	
	correct answers to questions;	
	appropriate equipment to answer questions;	
	the ability to draw conclusions and formulate proposals	
	Adequate ownership industry issues with minor faults.	90-94
	Sufficient clarity response (report) with minor faults.	
	Appropriate communication strategy with minor faults	
	Good knowledge of the problems of the industry. Good	85-89

descriptors NLC	Requirements for knowledge, communication,	Indicator
-	autonomy and responsibility	evaluation
	clarity response (report) and relevant communication	
	strategy (total three requirements are not implemented)	00.04
	Good knowledge of the problems of the industry. Good	80-84
	clarity response (report) and relevant communication	
	strategy (a total of four requirements is not implemented)	74.70
	Good knowledge of the problems of the industry. Good	74-79
	clarity response (report) and relevant communication	
	strategy (total not implemented the five requirements)	
	Satisfactory ownership issues of the industry. Satisfactory	70-73
	clarity response (report) and relevant communication	
	strategy (a total of seven requirements not implemented)	
	Partial ownership issues of the industry. Satisfactory clarity	65-69
	response (report) and communication strategy of faults	
	(total not implemented nine requirements)	
	The fragmented ownership issues of the industry.	60-64
	Satisfactory clarity response (report) and communication	
	strategy of faults (total not implemented 10 requirements)	
	The level of poor communication	<60
	Autonomy and responsibility	
 management actions 	- Excellent individual ownership management	95-100
or complex projects,	competencies focused on:	
responsible for	1) management of complex projects, providing:	
decision-making in	- exploratory learning activities marked the ability to	
unpredictable	independently evaluate various life situations, events, facts,	
conditions;	detect and defend a personal position;	
 responsible for the 	- the ability to work in a team;	
professional	- control of their own actions;	
development of	2) responsibility for decision-making in unpredictable	
individuals and/or	conditions, including:	
groups	- justify their decisions the provisions of the regulatory	
• the ability to continue	framework of sectoral and national levels;	
study with a high	- independence while performing tasks;	
degree of autonomy	- lead in discussing problems;	
	- responsibility for the relationship;	
	3) responsible for the professional development of	
	individuals and/or groups that includes:	
	- use of vocational-oriented skills;	
	- the use of evidence from independent and correct	
	reasoning;	
	- possession of all kinds of learning activities;	
	4) the ability to further study with a high degree of	
	autonomy, which provides:	
	- degree possession of fundamental knowledge;	
	- independent evaluation judgments;	
	- high level of formation of general educational skills;	
	- search and analysis of information resources	
	Confident personality possession competency management	90-94
	(not implemented two requirements)	
	Good knowledge management competencies personality	85-89
	(not implemented three requirements)	
	(not implemented times requirements)	l .

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
	Good knowledge management competencies personality	80-84
	(not implemented the four requirements)	
	Good knowledge management competencies personality	74-79
	(not implemented six requirements)	
	Satisfactory ownership of individual competence	70-73
	management (not implemented seven requirements)	
	Satisfactory ownership of individual competence	65-69
	management (not implemented eight claims)	
	The level of autonomy and responsibility fragmented	60-64
	The level of autonomy and responsibility poor	<60

7 TOOLS, EQUIPMENT, AND SOFTWARE

Technical training tools via multimedia software. Distance learning platform Moodle.

8 RECOMMENDED BIBLIOGRAPHY

- 1. De Verteuil R., McCourt J. Introduction to Directional Drilling. Slumberger, 2001. 52 p.
- 2. Hill A.D., Zhu Ding, Economides Michael J. Multilateral Wells. Society of Petroleum Engineers, 2008. 200 p.
- 3. Richard S. Carden, Robert D. Grace, Directional Horizontal Drilling Manual PetroSkills. Manual, Tulsa, Oklahoma, Petroskills, LLC. AN OGCI Company, 2007. 409 p.
- 4. Short J.A. Jim. Introduction to Directional and Horizontal Drilling. Pennwell Books, 1993. IX. 232 p.

Educational edition

WORK PROGRAM OF THE ACADEMIC DISCIPLINE "Drilling of inclined-directional wells" for bachelors 185 "Oil and Gas Engineering and Technology"

Authors: Volodymyr Lvovich Khomenko

Prepared for publication
Dnipro University of Technology.
Certificate of registration in the State Register, control number 1842
49005, Dnipro, Dmytra Yavornytskoho Ave. 19